1. Distribusi Normal
Salah satu distribusi frekuensi yang paling penting dalam statistika adalah distribusi normal. Distribusi normal berupa kurva berbentuk lonceng setangkup yang melebar tak berhingga pada kedua arah positif dan negatifnya. Penggunaanya sama dengan penggunaan kurva distribusi lainnya. Frekuensi relatif suatu variabel yang mengambil nilai antara dua titik pada sumbu datar. Tidak semua distribusi berbentuk lonceng setangkup merupakan distribusi normal.
Pada tahun 1733 DeMoivre menemukan persamaan matematika kurva normal yang menjadi dasar banyak teori statistika induktif. Distribusi normal sering pula disebut Distribusi Gauss untuk menghormati Gauss (1777 – 1855), yang juga menemukan persamaannya waktu meneliti galat dalam pengukuran yang berulang-ulang mengenai bahan yang sama.
Sifat dari variabel kontinu berbeda dengan variabel diskrit. Variabel kontinu mencakup semua bilangan, baik utuh maupun pecahan. Oleh karenanya tidak bisadipisahkan satu nilai dengan nilai yang lain. Itulah sebabnya fungsi variabel random kontinu sering disebut fungsi kepadatan, karena tidak ada ruang kosong diantara dua nilai tertentu. Dengan kata lain sesungguhnya keberadaan satu buah angka dalam variabel kontinu jika ditinjau dari seluruh nilai adalah sangat kecil, bahkan mendekati nol. Karena itu tidak bisa dicari probabilitas satu buah nilai dalam variabel kontinu, tetapi yang dapat dilakukan adalah mencari probabilitas diantara dua buah nilai. Distribusi kontinu mempunyai fungsi matematis tertentu. Jika fungsi matematis tersebut digambar, maka akan terbentuk kurva kepadatan dengan sifat sebagai berikut:
1. Probabilitas nilai x dalam variabel tersebut terletak dalam rentang antara 0 dan 1
2. Probabilitas total dari semua nilai x adalah sama dengan satu (sama dengan luas daerah
di bawah kurva)
Fungsi kepadatan merupakan dasar untuk mencari nilai probabilitas di antara dua nilai variabel. Probabilitas di antara dua nilai adalah luas daerah di bawah kurva di antara dua nilai dibandingkan dengan luas daerah total di bawah kurva. Dapat dicari luas daerah tersebut dengan menggunakan integral tertentu (definit integral).
Persamaan matematika distribusi peluang peubah normal kontinu bergantung pada dua parameter μ dan σ yaitu rataan dan simpangan baku. Jadi fungsi padat x akan dinyatakan dengan n (x; μ, σ).
Begitu μ dan σ diketahui maka seluruh kurva normal diketahui. Sebagai contoh, bila μ = 50 dan σ = 5, maka ordinat n(x ; 50, 5) dapat dengan mudah dihitung untuk berbagai harga x dan kurvanya dapat digambarkan. Kedua kurva bentuknya persis sama tapi titik tengahnya terletak di tempat yang berbeda di sepanjang sumbu datar.
Dengan memeriksa turunan pertama dan kedua dari n(x ; μ, σ) dapat diperoleh lima sifat kurva normal berikut :
1. Modus, titik pada sumbu datar yang memberikan maksimum kurva, terdapat pada x=μ
2. Kurva setangkup terhadap garis tegak yang melalui rataan μ
3. Kurva mempunyai titik belok pada x = μ σ, cekung dari bawah bila μ – σ < x < μ + σ,
dan cekung dari atas untuk harga x lainnya
4. Kedua ujung kurva normal mendekati asimtot sumbu datar bila harga x bergerak
menjauhi μ baik ke kiri maupun ke kanan
5. Seluruh luas di bawah kurva diatas sumbu datar sama dengan 1
Bila x menyatakan peubah acak distribusi maka P(x1 < x < x2) diberikan oleh daerah yang diarsir dengan garis yang turun dari kiri ke kanan. Jelas bahwa kedua daerah yang diarsir berlainan luasnya. Jadi, peluang yang berpadanan dengan masing-masing distribusi akan berlainan pula.