19 Des 2011

Kalkulus : Komposisi Fungsi

. 19 Des 2011


Komposisi Fungsi
Komposisi fungsi merupakan penggabungan operasi dua fungsi secara berurutan yang akan menghasilkan sebuah fungsi baru.
Komposisi dua fungsi f(x) dan g(x)  dinotasikan dengan simbol (f \circ g)(x)  atau (g \circ f)(x) .
dimana
(f\circ g)(x)=f(g(x))
(g\circ f)(x)=g(f(x))
Sifat Komposisi Fungsi
  • (g \circ f)(x) \neq (f \circ g)(x)
  • (f\circ (g\circ h))(x)=((f\circ g)\circ h)(x)


Contoh :
diberikan fungsi :
{\color{Red} f(x)=2x+1}
{\color{Blue} g(x)=3x^2}
{\color{DarkGreen} h(x)=\frac{1}{x+4}}
1. (f\circ g)(x) = ….?
* fungsi g(x) disubtitusikan ke fungsi f(x)
\begin{align*}(f\circ g)(x)&=&{\color{Red} f}({\color{Blue} g(x)})\\&=&{\color{Red} f}({\color{Blue} 3x^2})\\&=&{\color{Red} 2(}{\color{Blue} 3x^2}{\color{Red} )+1}\\(f\circ g)(x)&=&6x^2+1 \end{align*}
2. (g\circ h)(x) = ….?
* fungsi  h(x) disubtitusikan ke fungsi  g(x)
\begin{align*}(g\circ h)(x)&=&{\color{Blue} g}({\color{DarkGreen} h(x)})\\&=&{\color{Blue} g}({\color{DarkGreen} \frac{1}{x+4}})\\&=&{\color{Blue} 3}\left ({\color{DarkGreen} \frac{1}{x+4}} \right )^{\color{Blue} 2}\\&=&3\left (\frac{1}{x^2+8x+16} \right )\\(g\circ h)(x)&=&\frac{3}{x^2+8x+16} \end{align*}
3.(h\circ g\circ f)(x) =…?
* fungsi f(x) disubtitusikan terlebih dahulu ke fungsi g(x) nah, hasilnya baru disubtitusikan ke fungsi h(x), perhatikan warna mewakili subtitusi ….ok!
\begin{align*}(h\circ g\circ f)(x)&=&{\color{DarkGreen} h}({\color{Blue} g}({\color{Red} f(x)}))\\&=&{\color{DarkGreen} h}({\color{Blue} g}({\color{Red} 2x+1}))\\&=&{\color{DarkGreen} h}({\color{Blue} 3}({\color{Red} 2x+1})^{\color{Blue} 2})\\&=&{\color{DarkGreen} h}(3(4x^2+4x+1))\\&=&{\color{DarkGreen} h}(12x^2+12x+3)\\&=&\frac{{\color{DarkGreen} 1}}{\left (12x^2+12x+3 \right ){\color{DarkGreen} +4}}\\&=&\frac{1}{12x^2+12x+7}\end{align*}
Bagaimana contoh diatas???sudah cukup jelas,kan???!!
Berhati-hatilah dalam mensubtitusikan ya….

Mencari salah satu fungsi jika komposisi fungsi diketahui
1. Mencari g(x)  jika  f(x)dan (f\circ g)(x)  diketahui
contoh soal dan pembahasan :
Diketahui (f\circ g)(x)=19-6x  dan  {\color{Red} f(x)=3x+1}  tentukan fungsi {\color{Blue} g(x)} !
jawab :
\begin{align*}(f\circ g)(x)&=&19-6x\\{\color{Red} f}({\color{Blue} g(x)})&=&19-6x\\{\color{Red} 3(}{\color{Blue} g(x)}{\color{Red} )+1}&=&19-6x\\{\color{Red} 3(}{\color{Blue} g(x)}{\color{Red} )}&=&19-6x{\color{Red} -1}\\{\color{Blue} g(x)}&=&\frac{18-6x}{3}\\{\color{Blue} g(x)}&=&6-2x \end{align*}
2. Mencari f(x)   jika  g(x)dan (f\circ g)(x)  diketahui
contoh soal dan pembahasan :
Diketahui (f\circ g)(x)=2x+1 dan {\color{Blue} (g)(x)=x+3} tentukan {\color{Red} f(x)} !
jawab :
\begin{align*}(f\circ g)(x)&=&2x+1\\f({\color{Blue} g(x)})&=&2x+1\\f({\color{Blue} x+3})&=&2x+1\end{align*}
Kita misalkan dulu :
\begin{align*}{\color{Blue} x+3}&=&{\color{DarkGreen} y}\\x&=&{\color{DarkGreen} y-3}\end{align*}
Subtitusikan kembali ke fungsi :
\begin{align*}f({\color{Blue} x+3})&=&2x+1\\f({\color{DarkGreen} y})&=&2({\color{DarkGreen} y-3})+1\\f({\color{DarkGreen} y})&=&2y-6+1\\f({\color{DarkGreen} y})&=&2y-5\\f(x)&=&2x-5\end{align*}



1 comment

rumah tenun troso mengatakan...

ane gak paham cara bacanya rumusnya mas, bisa dijelasin mas....

:)) ;)) ;;) :D ;) :p :(( :) :( :X =(( :-o :-/ :-* :| 8-} :)] ~x( :-t b-( :-L x( =))

Posting Komentar

Silakan Tinggalkan pesan mengenai Blog ini, Tapi jangan Nyepam ya...Makasi atas Kunjunganya :)

Baca Juga Yang Ini :) :

 
Copyright 2008 New World Funday is proudly powered by Blogger.com | Template by o-om.com